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Abstract—SSL/TLS is the most commonly deployed family of
protocols for securing network communications. The security
guarantees of SSL/TLS are critically dependent on the correct
validation of the X.509 server certificates presented during the
handshake stage of the SSL/TLS protocol. Hostname verification
is a critical component of the certificate validation process that
verifies the remote server’s identity by checking if the hostname
of the server matches any of the names present in the X.509
certificate. Hostname verification is a highly complex process
due to the presence of numerous features and corner cases such
as wildcards, IP addresses, international domain names, and so
forth. Therefore, testing hostname verification implementations
present a challenging task.

In this paper, we present HVLearn, a novel black-box testing
framework for analyzing SSL/TLS hostname verification imple-
mentations, which is based on automata learning algorithms.
HVLearn utilizes a number of certificate templates, i.e., certifi-
cates with a common name (CN) set to a specific pattern, in
order to test different rules from the corresponding specification.
For each certificate template, HVLearn uses automata learning
algorithms to infer a Deterministic Finite Automaton (DFA) that
describes the set of all hostnames that match the CN of a given
certificate. Once a model is inferred for a certificate template,
HVLearn checks the model for bugs by finding discrepancies
with the inferred models from other implementations or by
checking against regular-expression-based rules derived from the
specification. The key insight behind our approach is that the
acceptable hostnames for a given certificate template form a
regular language. Therefore, we can leverage automata learning
techniques to efficiently infer DFA models that accept the
corresponding regular language.

We use HVLearn to analyze the hostname verification im-
plementations in a number of popular SSL/TLS libraries and
applications written in a diverse set of languages like C, Python,
and Java. We demonstrate that HVLearn can achieve on aver-
age 11.21% higher code coverage than existing black/gray-box
fuzzing techniques. By comparing the DFA models inferred by
HVLearn, we found 8 unique violations of the RFC specifications
in the tested hostname verification implementations. Several
of these violations are critical and can render the affected
implementations vulnerable to active man-in-the-middle attacks.

I. INTRODUCTION

The SSL/TLS family of protocols are the most commonly

used mechanisms for protecting the security and privacy

of network communications from man-in-the-middle attacks.

The security guarantees of SSL/TLS protocols are critically

dependent on correct validation of X.509 digital certificates

presented by the servers during the SSL/TLS handshake phase.

The certificate validation, in turn, depends on hostname ver-

ification for verifying that the hostname (i.e., fully qualified

domain name, IP address, and so forth) of the server matches

one of the identifiers in the “SubjectAltName” extension or

the “Common Name” (CN) attribute of the presented leaf

certificate. Therefore, any mistake in the implementation of

hostname verification could completely undermine the security

and privacy guarantees of SSL/TLS.

Hostname verification is a complex process due to the pres-

ence of numerous special cases (e.g., wildcards, IP addresses,

international domain names, etc.). For example, a wildcard

character (‘*’) is only allowed in the left-most part (separated

by ‘.’) of a hostname. To get a sense of the complexities

involved in the hostname verification process, consider the

fact that different parts of its specifications are described

in five different RFCs [18], [20], [21], [24], [25]. Given

the complexity and security-critical nature of the hostname

verification process, it is crucial to perform automated analysis

of the implementations for finding any deviation from the

specification.

However, despite the critical nature of the hostname ver-

ification process, none of the prior research projects dealing

with adversarial testing of SSL/TLS certificate validation [36],

[38], [45], [50], support detailed automated testing of host-

name verification implementations. The prior projects either

completely ignore testing of the hostname verification process

or simply check whether the hostname verification process

is enabled or not. Therefore, they cannot detect any subtle

bugs where the hostname verification implementations are

enabled but deviate subtly from the specifications. The key

problem behind automated adversarial testing of hostname

verification implementations is that the inputs (i.e., hostnames

and certificate identifiers like common names) are highly

structured, sparse strings and therefore makes it very hard

for existing black/gray-box fuzz testing techniques to achieve

high test coverage or generate inputs triggering the corner

cases. Heavily language/platform-dependent white-box testing

techniques are also hard to apply for testing hostname verifi-

cation implementations due to the language/platform diversity

of SSL/TLS implementations.

In this paper, we design, implement, and evaluate HVLearn,

a black-box differential testing framework based on automata

learning, which can automatically infer Deterministic Finite

Automata (DFA) models of the hostname verification imple-

mentations. The key insight behind HVLearn is that hostname

verification, even though very complex, conceptually closely
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resemble the regular expression matching process in many

ways (e.g., wildcards). This insight on the structure of the

certificate identifier format suggests that the acceptable host-

names for a given certificate identifier, as suggested by the

specifications, form a regular language. Therefore, we can

use black-box automata learning techniques to efficiently infer

Deterministic Finite Automata (DFA) models that accept the

regular language corresponding to a given hostname verifica-

tion implementation. Prior results by Angluin et al. have shown

that DFAs can be learned efficiently through black-box queries

in polynomial time over the number of states [31]. The DFA

models inferred by HVLearn can be used to efficiently perform

two main tasks that existing testing techniques cannot do well:

(i) finding and enumerating unique differences between mul-

tiple different implementations; and (ii) extracting a formal,

backward-compatible reference specification for the hostname

verification process by computing the intersection DFA of the

inferred DFA models from different implementations.

We apply HVLearn to analyze a number of popular

SSL/TLS libraries such as OpenSSL, GnuTLS, MbedTLS,

MatrixSSL, CPython SSL and applications such as Java

HttpClient and cURL written in diverse languages like C,

Python, and Java. We found 8 distinct specification violations

like the incorrect handling of wildcards in internationalized

domain names, confusing domain names with IP addresses,

incorrect handling of NULL characters, and so forth. Several

of these violations allow network attackers to completely break

the security guarantees of SSL/TLS protocol by allowing

the attackers to read/modify any data transmitted over the

SSL/TLS connections set up using the affected implementa-

tions. HVLearn also found 121 unique differences, on average,

between any two pairs of tested application/library.

The major contributions of this paper are as follows.

• To the best of our knowledge, HVLearn is the first testing

tool that can learn DFA models for implementations

of hostname verification, a critical part of SSL/TLS

implementations. The inferred DFA models can be used

for efficient differential testing or extracting a formal

reference specification compatible with multiple existing

implementations.

• We design and implement several domain-specific opti-

mizations like equivalence query design, alphabet selec-

tion, etc. in HVLearn for efficiently learning DFA models

from hostname verification implementations.

• We evaluate HVLearn on 6 popular libraries and 2 appli-

cations. HVLearn achieved significantly higher (11.21%
more on average) code coverage than existing black/gray-

box fuzzing techniques and found 8 unique previously

unknown RFC violations as shown in Table II, several

of which render the affected SSL/TLS implementations

completely insecure to man-in-the-middle attacks.

The remainder of this paper is organized as follows: Sec-

tion II presents the descriptions of the SSL/TLS hostname

verification process. We discuss the challenges in testing host-

name verification and our testing methodology in Section III.

Section IV describes the design and implementation details

of HVLearn. We present the evaluation results for using

HVLearn to test SSL/TLS implementations in Section V.

Section VI presents a detailed case study of several security-

critical bugs that HVLearn found. Section VII discusses the

related work and Section VIII concludes the paper. For the

detailed developer responses on the bugs found by HVLearn,

we refer interested readers to Appendix X-B.

II. OVERVIEW OF HOSTNAME VERIFICATION

As part of the hostname verification process, the SSL/TLS

client must check that the host name of the server matches

either the “common name” attribute in the certificate or one

of the names in the “subjectAltName” extension in the certifi-

cate [21]. Note that even though the process is called hostname

verification, it also supports verification of IP addresses or

email addresses.

In this section, we first provide a brief summary of the

hostname format and specifications that describe the format

of the common name attribute and subjectAltName extension

formats in X.509 certificate. Figure 1 provides a high-level

summary of the relevant parts of an X.509 certificate. Next,

we describe different parts of the hostname verification process

(e.g., domain name restrictions, wildcard characters, and so

forth) in detail.

X.509 Certificate

Subject:

X509v3 extensions

X509v3 Subject Alternative Name:

CN= X520CommonName arbitrary

type format

DNS:

IP Address:

email:

IA5String

IA5String

IA5String

type format

dNSName

iPAddress

rfc822Name

Fig. 1. Fields in an X.509 certificate that are used for hostname verification.

A. Hostname verification inputs

Hostname format. Hostnames are usually either a fully

qualified domain name or a single string without any ‘.’

characters. Several SSL/TLS implementations (i.e., OpenSSL)

also support IP addresses and email addresses to be passed

as the hostname to the corresponding hostname verification

implementation.

A domain name consists of multiple “labels”, each separated

by a ‘.’ character. The domain name labels can only contain

letters a-z or A-Z (in a case-insensitive manner), digits 0-9

and the hyphen character ‘-’ [16]. Each label can be up to

63 characters long. The total length of a domain name can

be up to 255 characters. Earlier specifications required that

the labels must begin with letters [21]. However, subsequent

revisions have allowed labels that begin with digits [17].

Common names in X.509 certificates. The Common Name

(CN) is an attribute of the “subject distinguished name”
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field in an X.509 certificate. The common name in a server

certificate is used for validating the hostname of the server as

part of the certificate verification process. A common name

usually contains a fully qualified domain name, but it can also

contain a string with arbitrary ASCII and UTF-8 characters

describing a service (e.g., CN=‘Sample Service’). The only

restriction on the common name string is that it should follow

the X520CommonName standard (e.g., should not repeat the

substring ‘CN=’) [21]. Note that this is different from the

hostname specifications that are very strictly defined and only

allow certain characters and digits as described above.

SubjectAltName in X.509 certificates. Subject alternative

name (subjectAltName) is an X.509 extension that can be

used to store different types of identity information like fully

qualified domain names, IP addresses, URI strings, email

addresses, and so forth. Each of these types has different

restrictions on allowed formats. For example, dNSName(DNS)

and uniformResourceIdentifier(URI) must be valid IA5String

strings, a subset of ASCII strings [21]. We refer interested

readers to Section 4.1.2.6 of RFC 5280 for further reading.

B. Hostname verification rules

Matching order. RFC 6125 recommends SSL/TLS imple-

mentations to use subjectAltName extensions, if present in

a certificate, over common names as the common name is

not strongly tied to an identity and can be an arbitrary string

as mentioned earlier [24]. If multiple identifiers are present

in a subjectAltName, the SSL/TLS implementations should

try to match DNS, SRV, URI, or any other identifier type

supported by the implementation and must not match the

hostname against the common name of the certificate [24].

The Certificate Authorities (CAs) are also supposed to use the

dNSName instead of common name for storing the identity

information while issuing certificates [18].

Wildcard in common name/subjectAltName. if a server

certificate contains a wildcard character ‘*’, an SSL/TLS

implementation should match hostname against them using

the rules described in RFC 6125 [24]. We provide a summary

of the rules below.

A wildcard character is only allowed in the left-most label.

If the presented identifier contains a wildcard character in any

label other then the left-most label (e.g., www.*.example.com

and www.foo*.example.com), the SSL/TLS implementations

should reject the certificate. A wildcard character is allowed to

be present anywhere in the left-most label, i.e., a wildcard does

not have to be the only character in the left-most label. For ex-

ample, identifiers like bar*.example.com, *bar.example.com,

or f*bar.example.com valid.

While matching hostnames against the identifiers present

in a certificate, a wildcard character in an identifier should

only apply to one sub-domain and an SSL/TLS implemen-

tation should not compare against anything but the left-

most label of the hostname (e.g., *.example.com should

match foo.example.com but not bar.foo.example.com or ex-

ample.com).

Several special cases involving the wildcards are allowed in

the RFC 6125 only for backward compatibility of existing

SSL/TLS implementations as they tend to differ from the

specifications in these cases. RFC 6125 clearly notes that

these cases often lead to overly complex hostname verification

code and might lead to potentially exploitable vulnerabilities.

Therefore, new SSL/TLS implementations are discouraged

from supporting such cases. We summarize some of them:

(i) a wildcard is all or part of a label that identifies a

public suffix (e.g., *.com and *.info), (ii) multiple wildcards

are present in a label (e.g., f*b*r.example.com), and (iii)

wildcards are included as all or part of multiple labels (e.g.,

*.*.example.com).

International domain name (IDN). IDNs can contain charac-

ters from a language-specific alphabet like Arabic or Chinese.

An IDN is encoded as a string of unicode characters. A domain

name label is categorized as a U-label if it contains at least one

non-ASCII character (e.g., UTF-8). RFC 6125 specifies that

any U-labels in IDNs must be converted to A-labels domain

before performing hostname verification [24]. U-label strings

are converted to A-labels, an ASCII-compatible encoding,

by adding the prefix ‘xn--’ and appending the output of

a Punycode transformation applied to the corresponding U-

label string as described in RFC 3492 [19]. Both U-labels and

A-labels still must satisfy the standard length bound on the

domain names (i.e. up to 255 bytes).

IDN in subjectAltName. As indicated in RFC 5280, any

IDN in X.509 subjectAltName extension must be defined as

type IA5String which is limited only to a subset of ASCII

characters [21]. Any U-label in an IDN must be converted

to A-label before adding it to the subjectAltName. Email

addresses involving IDNs must also be converted to A-labels

before.

IDNs in common name. Unlike IDNs in subjectAltName,

IDNs in common names are allowed to contain a Printa-

bleString (A-Z, a-z, 0-9, special characters ’ = ( ) + ,
- . / : ?, and space) as well as UTF-8 characters [21].

Wildcard and IDN. There is no specification defining how

a wildcard character may be embedded within A-labels or

U-labels of an IDN [23]. As a result RFC 6125 [24] rec-

ommends that SSL/TLS implementations should not match

a presented identifier in a certificate where the wildcard

is embedded within an A-label or U-label of an IDN

(e.g., xn--kcry6tjko*.example.com). However, SSL/TLS im-

plementations should match a wildcard character in an IDN

as long as the wildcard character occupies the entire left-most

label of the IDN (e.g. *.xn--kcry6tjko.example.com).

IP address. IP addresses can be part of either the common

name attribute or the subjectAltName extension (with an ‘IP:’

prefix) in a certificate. Section 3.1.3.2 of RFC 6125 specifies

that an IP address must be converted to network byte order

octet string before performing certificate verification [24].

SSL/TLS implementations should compare this octet string

with the common name or subjectAltName identifiers. The

length of the octet string must be 4 bytes and 18 bytes for

IPv4 and IPv6 respectively. The hostname verification should
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succeed only if both octet strings are identical. Therefore,

wildcard characters are not allowed in IP address identifiers,

and the SSL/TLS implementations should not attempt to match

wildcards.
Email. Email can be embedded in common name as the

emailAddress attribute in legacy SSL/TLS implementations.

The attribute is not case sensitive. However, new implemen-

tations must add email addresses in rfc822Name format to

subject alternative name extension instead of the common

name attribute [21].
Internationalized email. As similar to IDNs in subjec-

tAltName extensions, an internationalized email must be

converted into the ASCII representation before verifica-

tion. RFC 5321 also specifies that network administrators

must not define mailboxes (local-part@domain/address-literal)

with non-ASCII characters and ASCII control characters.

Email addresses are considered to match if the local-part

and host-part are exact matches using a case-sensitive and

case-insensitive ASCII comparison respectively (e.g., MYE-

MAIL@example.com does not match myemail@example.com

but matches MYEMAIL@EXAMPLE.COM) [21]. Note that

this specification contradicts that of the email addresses em-

bedded in the common name that is supposed to be completely

case-insensitive.
Email with IP address in the host part. RFCs 5280 and 6125

do not specify any special treatment for IP address in the host

part of email and only allow email in rfc822Name format. The

rfc822Name format supports both IPv4 and IPv6 addresses in

the host part. Therefore, an email with an IP address in the

host part is allowed to be present in a certificate [22].
Wildcard in email. There is no specification that wildcard

should be interpreted and attempted to match when they are

part of an email address in a certificate.
Other identifiers in subjectAltName. There are other iden-

tifiers that can be used to perform identity checks e.g.,

UniformResourceIdentifier(URI), SRVName, and otherName.

However, most popular SSL/TLS libraries do not support

checking these identifiers and leave it up to the applications.

III. METHODOLOGY

In this section, we describe the challenges behind automated

testing of hostname verification implementations. Albeit small

in size, the diversity of these implementations and the sub-

tleties in the hostname verification process make these im-

plementations difficult to test. We then proceed to describe an

overview of our methodology for testing hostname verification

implementations using automata learning algorithms. We also

provide a brief summary of the basic setting under which

automata learning algorithms operate.

A. Challenges in hostname verification analysis
We believe that any methodology for automatically ana-

lyzing hostname verification functionality should address the

following challenges:
1. Ill-defined informal specifications. As discussed in Sec-

tion II, although the relevant RFCs provide some exam-

ples/rules defining the hostname verification process, many

corner cases are left unspecified. Therefore, it is necessary

for any hostname verification implementation analysis to take

into account the behaviors of other popular implementations to

discover discrepancies that could lead to security/compatibility

flaws.

2. Complexity of name checking functionality. Hostname

verification is significantly more complex than a simple string

comparison due to the presence of numerous corner cases and

special characters. Therefore, any automated analysis must

be able to explore these corner cases. We observe that the

format of the certificate identifier as well as the matching

rules closely resemble a regular expression matching problem.

In fact, we find that the set of accepted hostnames for each

given certificate identifier form a regular language.

3. Diversity of implementations. The importance and pop-

ularity of the SSL/TLS protocol resulted in a large number

of different SSL/TLS implementations. Therefore, hostname

verification logic is often implemented in a number of different

programming languages such as C/C++, Java, Python, and so

forth. Furthermore, some of these implementations might be

only accessible remotely without any access to their source

code. Therefore, we argue that a black-box analysis algorithm

is the most suitable technique for testing a large variety of

different hostname verification implementations.

B. HVLearn’s approach to hostname verification analysis

Motivated by the challenges described above, we now

present our methodology for analyzing hostname verification

routines in SSL/TLS libraries and applications.

The main idea behind our HVLearn system is the following:

For different rules in the RFCs as well as for ambiguous rules

which are not well defined in the RFC, we generate “template

certificates” with common names which are specifically de-

signed in order to check a specific rule. Afterward, we use

automata learning algorithms in order to extract a DFA which

describes the set of all hostname strings which are matching

the common name in our template certificate. For example,

the inferred DFA from an implementation for the identifier

template “aaa.*.aaa.com” can be used to test conformance with

the rule in RFC 6125 prohibiting wildcard characters from

appearing in any other label than the leftmost label of the

common name.

Once a DFA model is generated by the learning algorithm,

we check the model for violations of any RFC rules or for

other suspicious behavior. HVLearn offers two methods to

check an inferred DFA model:

Regular-expression-based rules. The first option allows

the user to provide a regular expression that specifies a set of

invalid strings. HVLearn can ensure that the inferred DFAs do

not accept any of those strings. For example, RFC 1035 states

that only characters in the set [A-Za-z0-9] and the characters ‘-

’ and ‘.’ should be used in hostname identifiers. Users therefore

can construct a simple regular expression that can be used by

HVLearn to check whether any of the tested implementations

accept a hostname with a character outside the given set.
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Learning 
Algorithm

Model 
M

Equivalence 
Oracle

Target System

Membership query

Is model M correct?  
Yes/No with counter-example

Learning Model

Fig. 2. Exact learning from queries: the active learning model under which
our automata learning algorithms operate.

Differential testing. The second option offered by HVLearn

is to perform a differential testing between the inferred model

and models inferred from other implementations for the same

certificate template. Given two inferred DFA models, HVLearn

generates a set of unique differences between the two models

using an algorithm which we discuss in Section IV-E. This

option is especially useful for finding bugs in corner cases

which are not well defined in the RFCs.

We summarize the advantages of our approach below:

• Adopting a black-box learning approach ensures that

our analysis method is language independent and we

can easily test a variety of different implementations.

Our only requirement is the ability to query the target

library/application with a certificate and a hostname of

our choice and find whether the hostname is matching

the given identifier in the certificate.

• As pointed out in the previous section, hostname verifica-

tion is similar to regular expression matching. Given that

regular expressions can be represented as DFAs, adopting

an automata-based learning algorithm for representing the

inferred models for each certificate template is a natural

and effective choice.

• Finally, an additional advantage of having DFA models is

that we can efficiently compare two inferred models and

enumerate all differences between them. This property is

very important for differential testing as it helps us in

analyzing the ambiguous rules in the specifications.

Limitations. A natural trade-off of choosing to implement

our system as a black-box analysis method is that we cannot

guarantee completeness or soundness of our models. However,

each difference inferred by HVLearn can be easily verified by

querying the corresponding implementations. Moreover, since

our system will find all differences among implementations,

it will not report a bug that is common among all implemen-

tations unless a rule is explicitly specified for it, as described

above. Finally, we point out that not all discrepancies among

systems are necessarily security vulnerabilities; they may

represent equally acceptable design choices for ambiguous

parts of the RFCs.

C. Automata Learning Algorithms

We will now describe the automata learning algorithms that

allow us to realize our automata-based analysis framework.

Learning model. We utilize learning algorithms that work in

an active learning model which is called exact learning from
queries. Traditional supervised learning algorithms, such as

those used to train deep neural networks, work on a given set

of labeled examples. In contrast, active learning algorithms in

our model work by adaptively selecting inputs that they use

to query a target system and obtain the correct label.
Figure 2 presents an overview of our learning model. A

learning algorithm attempts to learn a model of a target

system by querying the target system with inputs of its choice.

Eventually, by querying the target system multiple times, the

learning algorithm infers a model of the target system. This

model is then checked for correctness through an equivalence
oracle, an oracle that checks whether the inferred model

correctly summarizes the behavior of the target system. If the

model is correct, i.e., it agrees with the target system on all

inputs, then the learning algorithm will output the generated

model and terminate. On the other hand, if the model is in-

correct, the equivalence oracle will produce a counterexample,

i.e., an input under which the target system and the model

produce different outputs. The learning algorithm then uses

the counterexample to refine the inferred model. This process

iterates until the learning algorithm produces a correct model.
To summarize, a learning algorithm in the exact learning

model is able to interact with the target system using two

types of queries:

• Membership queries: The input to this type of query is a

string s and the output is Accept or Reject depending

on whether the string s is accepted by the target system

or not.

• Equivalence queries: The input to an equivalence query

is a model M and the output of the query is either True,

if the model M is equivalent to the target system on all

inputs, or a counterexample input under which the model

and target system produce different outputs.

Automata learning in practice. The first algorithm for

inferring DFA models in the exact learning from queries

model was developed by Angluin [31] and was followed by a

large number of optimizations and variations in the following

years. In our system, we use the Kearns-Vazirani (KV) algo-

rithm [54]. The KV algorithm utilizes a data structure called

the discrimination tree and it is in practice more efficient in

terms of the amount of queries it requires to infer a DFA

model.
The most significant challenge that one should address in

order to use the KV algorithm and other automata learning

algorithms in practice, is how to implement an efficient and ac-

curate equivalence oracle in order to simulate the equivalence

queries performed by the learning algorithm. Since we only

have black-box access to the target system, any method for

implementing equivalence queries is necessarily incomplete.
In HVLearn, we use the Wp-method [49], for implementing

equivalence queries. The Wp-method checks the equivalence

between an inferred DFA and a target system using only

black-box queries to the target system. Essentially, the Wp-

method approximates an equivalence oracle by using multiple

525



Optimized 
Wp-Method

LearnLib

KV 
algorithm

certificate templates

HVLearn
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for test certificate template
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model
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(membership queries)

Wp-method’s test  
hostnames

accept/reject

match 
(hostname, test cert)?

SSL/TLS 
hostname 
verification 

implementation

test certificate template

Fig. 3. Overview of learning a hostname verification implementation using
HVLearn.

membership queries. The algorithm is given as input the DFA

to be checked and an upper bound on the number of states in

the target system when modeled as a DFA, a parameter which

we call depth. Then, the algorithm creates a set of test inputs

S, which are then submitted to the target system. If the target

system agrees with the DFA model on all inputs in the test set

S, then the DFA and the target system are proved equivalent

under the assumption that the upper bound on the number of

states of the target system is correct.

In theory, one can set the depth parameter of the Wp-method

to a very large value in order to design an equivalence oracle

which is, in practice, complete. However, the size of the set

of test inputs produced by the Wp-method is on the order of

O(n2|Σ|m−n+1) where Σ is the input alphabet for the DFA, m
is the upper bound on the number of states of the target system

and n is the number of states in the input DFA. Therefore,

using the Wp-method with a large depth (i.e., upper bound on

the number of states of the target system) is impractical. Note

that, the bound on the number of test inputs produced by the

Wp-method is not a worst case bound; on the contrary, the

number of test inputs produced is usually of that order.

Consequently, it is essential for the efficiency of our system

to maintain a small alphabet for our DFAs and also set a small

upper bound (depth) on the number of states of the target

system while using the Wp-method. We address both of these

issues in the next section.

IV. ARCHITECTURE OF HVLEARN

In this section, we describe the design and implementation

of our system, HVLearn, based on automata learning tech-

niques. Specifically, we describe the technical challenges that

arise when we attempt to use automata learning algorithms in

practice. We also summarize the optimizations that HVLearn

implements to address these challenges and efficiently learn

DFA models of hostname verification implementations.

A. System overview

Figure 3 presents an overview of how HVLearn is used to

analyze the hostname verification functionality of an SSL/TLS

library. To use HVLearn, the user provides HVLearn access to

the hostname verification function that takes an X.509 certifi-

cate and a hostname as input and returns accept/reject
depending on whether the provided hostname is matching the

identifier in the certificate. We describe how we implement

this interface in Section IV-C. Our system includes a number

of certificate templates, which are certificates designed to test

the SSL/TLS implementation on a number of different rules as

described in Section IV-B. For each such template, HVLearn

will learn a DFA model describing the set of hostnames

accepted by a given implementation for the given certificate

template. To produce a DFA model, HVLearn utilizes the

LearnLib [59] library which contains implementations of both

the KV algorithm and the Wp-method. To avoid setting the

maximum depth of the Wp-method to impractically high

values, we optimize the equivalence oracle as described in

Section IV-D.

Once a model is generated, our system proceeds to analyze

the model as described in Section IV-E. The results of our

analysis, both the inferred models and the differences between

models are then saved for reuse. Optionally, HVLearn can also

utilize the inferred models for a certificate template to extract a

formal specification for the corresponding certificate template

as described in Section V-F.

B. Generating certificate templates

To cover all different rules and ambiguous practices in

hostname verification, we created a set of 23 certificates with

different identifier templates, where each certificate is designed

to test a specific rule from the specification. These certificates

are selected to cover all the rules we described in Section II.

For example, a certificate with common name “xn--a*.aaa”

will test if the implementation allows wildcards as part of an

A-label in an IDN, something which is explicitly forbidden by

RFC 6125. Our template certificates are self-signed X.509 v3

certificates generated using the GnuTLS library. We choose

to use GnuTLS for certificate generation because it allows

identifiers with embedded NULL characters in both subject

common name and SAN. The template identifier to be tested

is placed in either Subject CN and/or SAN (as dNSName,

iPAddress, or email).

C. Performing membership queries

In order to utilize the learning algorithms in LearnLib

(including the Wp-method), we implement a membership
query function that performs all queries to the target system.

This function accepts input as a string and returns a binary

value. In our system, we use the hostname verification function

from the target SSL/TLS implementation. We note here that,

since LearnLib is written in Java while many of our tested

SSL/TLS implementations are written in C/C++/Python, we

utilized the Java Native Interface (JNI) [10] to efficiently

perform membership queries to the target in such cases.

D. Automata learning parameters and optimizations

In this section, we describe the architectural decisions and

optimizations that we implemented to efficiently scale the KV
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algorithm for testing complex real-world SSL/TLS hostname

verification implementations.

Alphabet size. The first important decision we have to make

to utilize the KV algorithm is to select an alphabet that will

be used by the algorithm. The alphabet refers to the set of

symbols that the learning algorithm will test.

A straightforward approach is to use a very general set

of characters such as the set of ASCII characters. However,

this will impose an unnecessary overhead in our system’s

performance since the performance of both the KV algorithm

and the Wp-method rely heavily on the underlying alphabet

size. Our main insight is that we can reduce the alphabet to

a small set of representative characters that will thoroughly

test all different aspects of hostname verification. In particular

we select the set Σ = { a, 1, dot, \s, @, A, =, *, x, n, -

, \u4F60, NULL} as an input alphabet in our experiments.

In the presented alphabet, ‘dot’ denotes the ‘.’ character, \s

denotes the space character (ASCII value 32), NULL denotes

the zero byte character, and \u4F60 denotes the unicode

character with hexadecimal value 4F60.

Note that this set of symbols is adequate for analyz-

ing hostname verification implementations since it includes

characters from all different categories such as lowercase,

uppercase, digits, unicode, etc., as well as special characters

like the NULL character. The lowercase characters ‘x’, ‘n’ in

conjunction with the ‘-’ character are necessary in order to

encode IDN hostnames. Finally, the inclusion of some non-

alphanumeric characters such as the ‘=’ character allows us

to detect violations where an implementation accepts invalid

hostnames.

Note that, even though the hostnames generated using this

alphabet set will often not resolve to a real IP address when

processed as DNS names, it does not affect the accuracy

of our analysis in any way. This is a side-effect the fact

that the hostname verification routines are not responsible for

resolving the provided DNS name to an IP address. It simply

checks whether the given hostname matches the identifier in

the provided certificate.

Caching membership queries. To avoid the communi-

cation cost of repeated querying of the SSL/TLS im-

plementations with same inputs, we utilize LearnLib’s

DFALearningCache class to cache the results of the mem-

bership queries. The cache is checked on each new query, and

a cached result is used whenever found. This optimization

is particularly useful for cutting down the overhead of the

repeated queries generated by the Wp-method across multiple

equivalence queries.

Optimizing equivalence queries. In practice, the first model

generated by the learning algorithm is usually just single

state DFA which rejects all hostnames. The reason is that

the learning algorithm is not able to generate any accepting

hostname and thus cannot distinguish between the initial state

and any other state in the target system. Sometimes, to force

the KV algorithm to produce an accepting hostname using the

Wp-method, a very large depth is required. This may cause

efficiency issues in the system. However, if we supply the

model with an accepting hostname, then trivial models will

be improved quickly without having to utilize excessive depth

parameters in the Wp-method.

Recall here that the exponential term in the Wp-method is

dependent on the difference between the number of states in

the model and the provided depth. Therefore, once we discover

an accepting state in the target system, the Wp-method with a

much smaller depth will still be able to explore many different

aspects of the hostname verification implementation.

In order to generate an accepting hostname, we perform

the following test during an equivalence query and before

calling the Wp-method. First, we search for any wildcard

characters (*) in the provided common name and replace them

with random characters from our alphabet to obtain a concrete

hostname. Next, we check that the generated model and the

target hostname verification implementation agree on a set

of hostnames generated using this method. If not, we return

the hostname for which they differ as a counterexample. The

main advantage of this heuristic is that it allows us to quickly

produce accepting hostnames that uncover new states in the

target system without invoking the Wp-method with very large

depth values. Once these states are uncovered, and the quality

of the inferred models improve, the Wp-method, with a small

depth parameter, is utilized to discover additional states in the

target system.

E. Analysis and comparison of inferred DFA models

After HVLearn outputs a model, the next task for our

system is to analyze the produced model for RFC violations or,

confusing/ambiguous rules in the RFC, to compare different

inferred models and analyze any discrepancies found between

different implementations.

Analyzing a single DFA model. In the case of a single model,

we would like to determine whether the model is accepting

invalid hostnames prohibited by the RFC specification. If the

specification is unclear, our analysis can still be used in order

to manually inspect the behavior of the implementation on the

specific certificate template besides the differential analysis

described below.

Our system offers two options for performing analysis of

a single model. First, our system generates inputs that will

exercise all simple paths (i.e., paths without loops) that lead

to accepting states, in the inferred model. Intuitively, these

inputs are a small set of inputs that describe all different flavors

of hostnames that will be accepted for the given certificate

template. By inspecting these certificates, we can determine if

the implementation is accepting invalid hostnames. Second,

HVLearn allows the user to specify a regular expression

rule to be checked against the inferred model. In this case,

the user specifies a regular expression and HVLearn verifies

that the regular expression and the inferred model does not

share any common strings. This option allows to easily check

certain RFC violations by utilizing simple regular expression

rules. For example, consider the rule specifying that no non-

alphanumeric characters should be part of a matching host-

name. By specifying the regular expression rule “(.)*=(.)*”
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we can check whether there exists any matching hostname

that contains the ‘=’ character in the inferred model.

Comparing unique differences between DFA models. For

analyzing certain corner cases which are not specified in the

RFC, testing a single model may not be enough. Instead, we

compare the inferred models for different SSL/TLS imple-

mentations and find inputs under which the implementations

behave differently. To perform this analysis, we utilize the

difference enumeration algorithm from [33]. In a nutshell, this

algorithm computes the product DFA between two, or more,

given models and then finds all simple paths to states in which

the DFAs are producing different output.

F. Specification Extraction

As we discussed already, the RFC specifications leave cer-

tain aspects of hostname verification up to the implementations

by not specifying the correct behavior in all cases. In these

cases imposing specific restrictions in the implementations is

challenging since we have to be careful to avoid breaking

compatibility with existing implementations and valid cer-

tificates. In this section, we describe how the inferred DFA

models for the different certificate templates can be used to

infer a formal specification, which is compatible with existing

implementations, for the cases where RFC specifications are

vague.

Our main insight is the following: For each certificate
template, we can use the DFA accepting the set of host-
names accepted by all SSL/TLS implementations as a formal
specification of the corresponding rule template. The intuition

behind this choice is that this specification is avoiding small

idiosyncrasies of each library and it is thus very compact. On

the other hand, if a vulnerability exists in this specification

then this vulnerability must also exist in all tested implemen-

tations. Since each implementation is audited independently,

our choice gives us confidence that our specification is se-

cure from simple vulnerabilities while maintaining backward

compatibility with the tested implementations.

Computing the specification. In order to compute the cor-

responding specification for each certificate template, we pro-

ceed as follows: First, we obtain DFA models for all hostname

verification implementations under test using HVLearn. Next,

we compute the product DFA for all the inferred models. The

product DFA accepts the intersection of the regular languages

of each DFA. We compute the product DFA using standard

automata algorithms [60]. The inferred formal specification for

our set of implementations is represented by the product DFA

of each DFA model. This product DFA can be then converted

back to a regular expression to improve readability.

Finally, we would like to point out that computing the

intersection of k DFAs have a worst case time complexity

of O(nk) where n is the number of states in each DFA [55].

However, in our case, the inferred DFAs are mostly similar

and thus, the product construction is very efficient because

intersecting two DFAs is not adding a significant number of

states in the resulting product DFA. We provide more evidence

supporting this hypothesis in Section V.

V. EVALUATION

The main goals of our evaluation of HVLearn to answer

the following questions: (i) how effective HVLearn is in

finding RFC violations in real-world hostname verification

implementations? (ii) How much do our optimizations help

in improving the performance of HVLearn? (iii) how does

HVLearn perform compare to existing black-box or coverage-

guided gray-box techniques (iv) can HVLearn infer backward-

compatible specifications from the inferred DFAs of real-world

hostname verification implementations.

A. Hostname verification test subjects

We use HVLearn to test hostname verification imple-

mentations in six popular open-source SSL/TLS implemen-

tations, namely OpenSSL, GnuTLS, MbedTLS (PolarSSL),

MatrixSSL, JSSE, and CPython SSL, as well as in two popular

SSL/TLS applications: cURL and HttpClient. Note that as

several libraries like OpenSSL versions prior to 1.0.1 do not

provide support for hostname verification and leave it up to

the application developer to implement it. Therefore, applica-

tions like cURL/HttpClient that support different libraries are

often forced to write their own implementations of hostname

verification.

Among the libraries that support hostname verification,

some like OpenSSL provide separate API functions for match-

ing each type of identifier (i.e., domain name, IP addresses,

email, etc.) and leave it up to application to select the appro-

priate one depending on the setting. In contrast, others like

MatrixSSL combine all supported types of identifiers in one

function and figure out the appropriate by inspecting the input

string. Table I shows the hostname verification function/class

names for all implementations that we tested and the types of

identifier(s) that each of them supports. The last column shows

physical source lines of code (SLOC) for each host matching

function/class as reported by the SLOCCount [14] tool. Note

that the shown SLOC only count the parts of the code that

perform hostname matching.

B. Finding RFC violations with HVLearn

We use HVLearn to produce DFA models for each distinct

certificate template corresponding to different patterns from

the RFCs. Afterward, we detect potentially buggy behavior

by both performing differential testing of output DFAs as

well as checking individual DFAs for violations of regular-

expression-based rules that we created manually as described

in Section IV-E.

Table II presents the results of our experiments. We eval-

uated a diverse set of rules from four different RFCs [16],

[17], [21], [24]. We found that every rule that we tested is

violated by at least one implementation, while on average each

implementation is violating three RFC rules. Several of these

violations have severe security implications (e.g., mishandling

wildcard characters in international domain names, confusing

IP addresses as domain names etc.). We describe these cases

along with their security implications in detail in Section VI.
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TABLE I
HOSTNAME VERIFICATION FUNCTIONS (ALONG WITH THE TYPES OF

SUPPORTED IDENTIFIERS) IN SSL/TLS LIBRARIES AND APPLICATIONS

SSL/TLS Version Supported Hostname Matching Approx.
Libs/Apps Identifier(s) Function/Class Name SLOC

OpenSSL � 1.0.1 – – –
OpenSSL � 1.0.2 CN/DNS X509 check host 314

IP X509 check ip 308
IP X509 check ip asc 417

EMAIL X509 check email 314

GnuTLS 3.5.3 CN/DNS/IP gnutls x509 crt check hostname, 195
gnutls x509 crt check hostname2

EMAIL gnutls x509 crt check email 149

MbedTLS 2.3.0 CN/DNS mbedtls x509 crt verify, 193
mbedtls x509 crt verify with profile

MatrixSSL 3.8.4 CN/DNS/IP/ matrixValidateCerts 130
EMAIL

JSSE 1.8 CN/DNS/IP HostnameChecker 202

CPython SSL 3.5.2 CN/DNS/IP match hostname 59

HttpClient 4.5.2 CN/DNS/IP DefaultHostnameVerifier 257

cURL 7.50.3 CN/DNS/IP verifyhost, 300
Curl verifyhost

Note that the library with the most violations is JSSE

(four violations), while HttpClient is the application with the

most violations (five violations). OpenSSL, MbedTLS, and

CPython SSL only have two violations each, having common

the violation of matching invalid hostnames. The interested

reader can find an extended description of our results in the

Appendix (Table VIII).

C. Comparing unique differences between DFA models

In order to evaluate the discrepancies between all differ-

ent hostname verification implementations, we computed the

number of differences for each pair of hostname verification

implementations in our test set. Recall that for two given DFA

models we define the number of differences as the number of

simple paths in the product DFA which lead to a different

output being produced by the two models [33].

Table III presents the results of our experiment. For exam-

ple, OpenSSL and GnuTLS have 95 discrepancies in total. This

is obtained by summing up the number of unique paths that are

different between the inferred DFAs for each common name

in Table VIII. Note that all pairs of implementations contain

a large number of unique cases under which they produce a

different output. As seen in Table III, each pair of tested im-

plementation has 127 unique differences on average between

them. We note that some differences only imply ambiguous

RFC rules while some reveal the potential invalid hostnames

or RFC violation bugs. The interested reader can find a more

detailed list of the unique strings that each implementation

is accepting in Table VIII in the Appendix. In any case,

we find the fact that all implementations of such a security

critical component of the SSL/TLS protocol present such a

larger number of discrepancies to be an alarming issue since

it signifies either a poor implementation of the specification

or vagueness in the specification itself. Our analysis suggests

that both cases are present in practice.

D. Comparing code coverage of HVLearn and black/gray-box
fuzzing

In order to compare HVLearn’s effectiveness in finding

bugs with that of black/gray-box fuzzing, we investigate the

following research question:

RQ.1: How HVLearn’s code coverage differ from black/gray-
box fuzzing techniques?

We compare the code coverage of the tested hostname veri-

fication implementations achieved by HVLearn and two other

techniques, black-box fuzzing, and coverage-guided gray-box

fuzzing. We describe our testing setup briefly below.

HVLearn: HVLearn leverages automata learning that invokes

the hostname verification matching routine with a predefined

certificate template and alphabet set. HVLearn adaptively

refines a DFA corresponding to the test hostname verification

implementation by querying the implementation with new

hostname strings. We measure the code coverage achieved

during the learning process until it finishes. We also monitor

the total number of queries NQ, which comes from both the

membership and the equivalence queries.

Black-box fuzzing: With the same alphabet and certificate

template used by HVLearn, we randomly generate NQ strings

and query the target SSL/TLS hostname verification function

with the same certificate template. Note that the black-box

fuzzer generates independent random strings without any sort

of guidance.

Coverage-guided gray-box fuzzing: Unlike black-box

fuzzing, coverage-guided gray-box fuzzing tries to generate

more interesting inputs by using evolutionary techniques to

the input generation process. In each generation, a new batch

of inputs are generated from the previous generation through

mutation/cross-over and only the inputs that increase code

coverage are kept for further changes. Coverage-guided gray-

box fuzzing is a popular technique for finding bugs in large

real-world programs [6], [11].

To make it a fair comparison with HVLearn, we imple-

mented our own coverage-guided gray-box fuzzer as existing

tools like AFL do not provide an easy way of restricting

the mutation outputs within a given alphabet. With the same

alphabet set, we initialize the fuzzer with a set of strings of

varying lengths as the seeds maintained in a queue Q. The

seeds are then used by the fuzzer to query the target hostname

verification implementation. After finishing querying, using

the seeds, the fuzzer gets the string S = dequeue(Q). It

randomly mutates one character within S and obtains S′. Then

it uses the mutated S′ to query the target. If the mutated

string S′ increased code coverage, we store it in the queue for

further mutation, i.e., enqueue(S′, Q). Otherwise, we throw

it away. The fuzzer is thus guided to always mutate on the

strings that have better code coverage. The fuzzer iteratively

performs this enqueue/dequeue operations for NQ rounds,

and we obtain the final code coverage COVrandmu of each
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TABLE II
A SUMMARY OF RFC VIOLATIONS AND DISCREPANT BEHAVIORS FOUND BY HVLEARN IN THE TESTED SSL/TLS LIBRARIES AND APPLICATIONS
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Invalid hostname character
Only alphanumeric and ‘-’ matches in hostname 1035 � � � � � � � � �

Case-insensitive hostname
Match CN in case-insensitive manner 5280, 6125 � � � � � � � � �

Wildcard
Not attempt to match wildcard not in left-most label (CN/DNS: aaa.*.aaa) 6125 � � � � � � � � �

IDN and wildcard
Not attempt to match wildcard fragment in IDN (xn--a*.aaa) 6125 � � � � � � � � �

Common name and subjectAltName
No CN checked when DNS presents 6125 � � � � � � � � �
No CN checked when any SAN ID presents 6125 – � – � � � � � �

Email-based certificate
Case-sensitive on local-part of email attribute in SAN 5280 � � – � – – – – –

IP address-based certificate
Not attempt to match IP address with DNS (DNS: 1.1.1.1) 1123 – � � � � � � � �

Discrepancies

Wildcard
Attempt to match wildcard with empty label (hostname: .aaa.aaa with CN/DNS: *.aaa.aaa) – � � � � � � � � �
Attempt to match wildcard in public suffix (CN/DNS: *.co.uk) 6125 � � � � � � � � �

Embedded NULL character
Allowed NULL character in CN – � � � � � � � � �
Allowed NULL character in SAN – � � � � � � � � �
Match NULL character hostname: b.b\0.a.a, CN/DNS: b.b\0.a.a – � � � � � � � � �

Other invalid hostname
Partially match suffix (hostname: .a with CN/DNS: a.a, a.a.a) 1035 � � � � � � � � �
Match trailing dot (hostname: aaa.aaa with CN/DNS: aaa.aaa) – � � � � � � � � �

HttpClient*: HttpClient with PublicSuffixMatcher
For RFC Violation: �= OK, �= RFC violate, – = libs/apps do not support • For Discrepancies: �= Accept, �= Reject

TABLE III
NUMBER OF UNIQUE DIFFERENCES BETWEEN AUTOMATA INFERRED FROM

DIFFERENT SSL/TLS IMPLEMENTATIONS
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OpenSSL – 95 98 99 282 92 482 187
GnuTLS – – 6 38 127 34 214 56
MbedTLS – – – 44 97 28 220 50
MatrixSSL – – – – 37 25 58 94
JSSE – – – – – 69 177 110
CPython – – – – – – 108 54

HttpClient – – – – – – – 414
Curl – – – – – – – –

functions SSL/TLS implementations. Note that we keep the

test certificate template fixed during the entire test.

We use the percentage of lines executed, which are extracted

by Gcov [51], as the indicator for the code coverage. Consider-

ing that hostname verification is a small part of an SSL/TLS

implementation, we do not compute the percentage of lines

covered with respect to the total number of lines. Instead, we

calculate the percentage of line coverage within each function

and only take into account the functions that are related to
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Fig. 4. Comparison of code coverage achieved by HVLearn, gray-box fuzzing,
and black-box fuzzing for OpenSSL hostname verification.

hostname verification.

Result 1: HVLearn achieves 11.21% increase in code
coverage on average when comparing to the black/gray-
box fuzzing techniques.

Therefore, let LE(f ) be the number of lines executed of

function f in the SI and L(f ) be the total number of lines

of f , the code coverage can be defined in the following equa-
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tion: coverage =
∑m

i=1 LE(fi)∑m
i=1 L(fi)

, where f1, f2, · · · , fm are the

functions that are relevant to hostname verification. Figure 4

illustrates the code coverage comparison, which shows that

HVLearn achieves significantly better code coverage compared

to the black/gray-box fuzzing techniques.

E. Automata learning performance

HVLearn is largely based on the KV algorithm and the

Wp-method in order to perform its analysis. It is therefore

crucial to thoroughly evaluate the different parameters of these

algorithms and their impact on the performance of HVLearn.

We will now evaluate the effect of each different parameter

of the learning algorithms in the overall performance of

HVLearn.

RQ.2: How does the alphabet size affect HVLearn’s perfor-
mance in practice?

As discussed in Section III-C, the alphabet size impacts

the performance of our system. In theory, the performance of

both the KV algorithm and the Wp-method, depends on the

size of the input alphabet. We perform two experiments for

evaluating the extent to which the alphabet size affects the

performance of our learning algorithm component in practice.

In the first experiment, we evaluate the effect of increasing

the size of the alphabet in real world DNS names. For this

experiment, we used our system in the default configuration

with all optimizations (e.g., query cache and EQ optimizations)

enabled and we set the Wp-method depth to 1. We used the

CPython’s SSL implementation as the hostname verification

function for these experiments.

Figure 5 shows the results of our experiment. Notice that,

starting from an alphabet size of 9, each additional character

we include in the alphabet will cause the learning algorithm

to perform at least 10% more queries in order to produce a

model, for both DNS names, while this percentage is only

increasing when in larger alphabet sizes.

We also measure the effect of increasing the alphabet size

on the overall running time of our system. To perform this

experiment we used the same setup as our previous experiment

and evaluated the performance of HVLearn with a certificate

containing the common name “*.aaa.aaa”. Table IV shows

the results of this experiment. We notice that the increase

in the membership queries directly translates in an increased

running time. Specifically, by adding 5 additional characters

in the alphabet (from 2 to 5), we notice that the running time

increases 7 times. Similar results can be observed when we

add more characters in the alphabet set.

Result 2: Adding just one symbol in the alphabet set
incurs at least 10% increase in the number of queries.
Thus, the succinct alphabet set utilized by HVLearn is
crucial for the system’s performance.

RQ.3: Does membership cache improve the performance of
HVLearn?

Table IV presents the number of queries required to infer

a model for the certificate template with common name

 5000

 10000

 15000

 20000

 25000

 30000

 35000

9 10 11 12 13 14

N
um

be
r 

of
 q

ue
rie

s

Alphabet size

*.google.com
twitter.com

Fig. 5. Number of queries required to learn an automaton with different
alphabet sizes (with Wp-method depth=1 and equivalence query optimization).

TABLE IV
HVLEARN PERFORMANCE FOR COMMON NAME *.AAA.AAA WITH

WP-METHOD DEPTH=1 (CPYTHON SSL IMPLEMENTATION)

Alphabet
Size

W/o Cache With Cache
#Queries #Queries Average

Time
(sec)Total Total Membership Equivalence

Counterexample Membership
2 883 226 136 2 90 3.10
5 3,049 1,582 436 2 1,146 21.61
7 5,163 3,156 636 2 2,520 42.24
10 9,339 6,522 936 2 5,586 86.92
15 18,979 14,812 1,436 2 13,376 196.35
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Fig. 6. The number of queries needed to learn the DFA model of CPython
certificate verification for different Wp-method depth values (without equiv-
alence query optimization).

“*.aaa.aaa” with and without utilizing a membership query

cache over different alphabet sizes. We notice that the cache

is consistently helping to reduce the number of membership

queries required to infer a model. Overall, the cache is

reducing the number of queries by 42%, thus significantly

improving the efficiency of our system. Therefore, for the rest

of the experiments in this section, we utilize our system with

the membership query cache enabled.

Result 3: Membership cache is offering, on average,
a 42% decrease on the number of membership queries
made by the learning algorithm.

RQ.4: How does Wp-method’s depth parameter affect
HVLearn’s performance and accuracy?

As discussed in Section IV-D, the number of queries per-

formed by the Wp-method is exponential on the customizable

depth parameter. We evaluated how this exponential term is
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affecting the number of queries in practice and moreover, what

is the effect of different values of the depth parameter on the

correctness of the models inferred by HVLearn.

For our first experiment, we explore the correlation between

the overall number of membership queries and the corre-

sponding depth parameter. The results of this experiment are

presented in Figure 6 and Table V. In order to ensure that

the experiment finishes within a reasonable time, we further

reduced the alphabet size only to two symbols. the results

clearly show that the dependence between the depth parameter

and the overall number of queries performed by the learning

algorithm is clearly exponential, and in fact exactly matches

the O(|Σ|d) bound where d is the depth parameter as discussed

in Section IV-D. Notice that when the depth parameter of the

Wp-method is set to a value less than 8, HVLearn fails to

infer any aspect of the target implementation and outputs a

single state DFA model that rejects all hostnames as shown in

Table V.

Result 4: Large values of the Wp-method depth pa-
rameter result in impractical running times while small
values result in incomplete models.

RQ.5: How much improvement is offered by the equivalence
query optimization in HVLearn?

The previous experiment clearly demonstrates that the Wp-

method alone is not efficient enough to accurately analyze a

variety of different templates with HVLearn. Using our full

alphabet, inferring a complete model for the common name

“*.aaa.aaa” requires the depth parameter to be ≥ 8 as shown

in Table V. With our full alphabet of 13 symbols this would

require around 230 queries based on the query complexity of

the algorithm. We find that even running the algorithm with a

depth of 6, which is still not able to infer a complete model,

results in more than 68 million queries.

Therefore, our equivalence query optimization is a crucial

component of HVLearn that allows it to produce accurate

DFA models that can be used to evaluate the security and

correctness of the implementations. As we can see from

Table V, using our equivalence query optimization and a

depth parameter of just 1, our system is able to produce a

complete model for a given certificate template. Running the

same experiment with the alphabet size 15, we found that

HVLearn infers a correct model using only 14,812 queries as

shown in Table IV.

Result 5: EQ optimization is providing, in some cases,
over one order of magnitude improvement on the number
of queries required to infer a complete DFA model.

F. Specification Extraction

Let us now examine how we can utilize HVLearn’s spec-

ification extraction functionality in order to infer a practical

specification for the rule corresponding to the common name

“*.a.a”. This rule corresponds to the basic wildcard certificate

case where a wildcard is found in the leftmost label of the

TABLE V
THE NUMBER OF QUERIES NEEDED TO LEARN THE DFA MODEL OF

CPYTHON CERTIFICATE VERIFICATION FOR DIFFERENT WP-METHOD

DEPTH VALUES

Wp.
Depth

W/o EQ Optimization With EQ Optimization
#Queries #States Complete? #Queries #States Complete?

1 7 1 � 226 11 �
2 15 1 � 448 11 �
3 31 1 � 890 11 �
4 63 1 � 1,778 11 �
5 127 1 � 3,554 11 �
6 255 1 � 7,104 11 �
7 511 1 � 14,207 11 �
8 28,415 11 � 28,415 11 �
9 56,831 11 � 56,831 11 �

10 113,663 11 � 113,663 11 �
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(e) Intersection

Fig. 7. SSL/TLS implementations’ DFA and intersection DFA with CN/DNS:

*.a.a and alphabet: {a, .}

identifier. Nevertheless, Figure 7 demonstrates that even for

this simple rule, the corresponding DFA models for different

implementations present obvious discrepancies. For example,

DFA model (a) accepts the hostname “.a”, model (b) accepts

the hostname “.a.a”, while model (d) accepts the hostname

“a.a.a.”. Only model (c) perform the most intuitive matching
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by only accepting hostnames matching the regular expression

“a+.a.a” (here ‘+’ denotes one or more repetitions of the

character ‘a’).

By computing the intersection between all DFA models, we

obtain the intersection DFA model (e). Our first observation

is that the intersection DFA has only 6 states and it is thus

very compact as discussed in Section V-F. Furthermore, we

notice that the intersection DFA is the same as DFA (c)

that corresponds to the most natural implementation of the

corresponding rule. More importantly, even if we compute the

intersection without including model (c), we will still infer

the same specification. Thus, we conclude that computing the

intersection of DFA models, even from implementations which

fail in different ways, can often produce compact and natural

specifications.

Size of inferred models. In general, the actual size of the

inferred models is heavily dependent on the implementation

details of the tested system. However, we expect that the DFA

models inferred by our system will have around l + 2 states,

where l is the length of the common name in the certificate

template. Indeed, if we consider the inferred DFAs in Figure 7

we can notice that, for the common name “*.a.a” with length

l = 5, the average number of states is 6.9, which is very close

to the expected 7 states. Intuitively, the reasoning behind this

size is that a DFA for matching a string of length l is expected

to have l + 2 states in general where l states are moving the

DFA forward towards the accepting state while the additional

2 states include the initial state and a sink state where the DFA

goes when no match is found.

VI. CASE STUDY OF BUGS

The goal of our study aims at understanding the severity of

potential exploitation by incorrect or unclear hostname check

in certificate verification. We are also interested in finding any

inconsistency of SSL/TLS implementations’ hostname checks

with what RFC specifies. In this section, we present some

interesting cases we achieved from the result of our experiment

or corner cases we found.

A. Wildcards within A-labels in IDN identifiers

RFC 6125 strictly prohibits matching a certificate with an

identifier containing wildcards embedded within an A-label

of an IDN. For a certificate with an identifier of the form

“xn--aa*”, it is very difficult to predict the set of unicode

strings that will be matched after they are transformed into the

punycode format due to the complexity of the transformation

process. This inability to easily predict the set of hostnames

which match an A-label with an embedded wildcard often

present avenues for man-in-the-middle attacks.

Hostname verification implementations which match iden-

tifiers with wildcards embedded within A-labels have been

found recently in the Ruby OpenSSL extension [28] and the

NSS library used by Mozilla Firefox [27]. These issues were

identified as security vulnerabilities by the developers of the

corresponding products.

Using HVLearn, we identified that both JSSE and Http-

Client (without using PublicSuffixMatcher in construc-

tor) were also vulnerable to this issue. Our tool also reported

that the other tested libraries/applications were not affected.

B. Confusing order of checking between CN and SAN identi-
fiers.

RFC 6125 explicitly specifies that applications should not

attempt to match the hostname with the subject CN when any

subjectAltName identifiers are present, regardless of whether

there is a match in subjectAltName as shown in Section II).

We found a number of violations of that rule using HVLearn as

described in Table II. We also found that MatrixSSL exhibits

an interesting behavior in such cases.

More specifically, MatrixSSL matches the CN identifier

before attempting to match any identifiers in the SAN even

if they are present in the certificate. Note here that the CN

does not have any strong restrictions on its content and may

even contain non-FQDN characters (e.g., UTF-8).

Therefore, it is possible that certain certificate authorities,

following the instructions in RFC 6125, will not check the CN

in the presence of SAN identifiers and will issue a certificate

regardless of the value in the CN as long as the user is

successfully identified as the owner of the domains in the SAN

identifier. Albeit natural, this choice will render applications

using MatrixSSL vulnerable to a simple man-in-the-middle

attack.

Specifically, an attacker can generate a signed certificate

with a SAN identifier for a domain owned by the attacker, say

“www.attacker.com” and have the CN field set to the victim

domain, say “www.bank.com”. MatrixSSL will first check

the CN and omit to check the SAN identifiers. Therefore,

MatrixSSL will allow the attacker to hijack any domain which

is present in the CN field (e.g., www.bank.com).

C. Hijacking IP-based certificates

Section 2.3.1 of domain names implementation and speci-

fication in RFC [16] dictates that the preferred name (label)

should only begin with a letter character. However, RFC [17]

changed this restriction to allow the first character to be a letter

or a digit. This change introduced valid DNS names which are

identical to IP addresses.

Unfortunately, the fact that IP addresses are also valid DNS

names may open a new avenue for an attack as we describe

below. Notice that, for this attack to become practical, a

numeric Top Level Domain (TLD) in the range 0-255 must

exist, something that is currently unavailable. Nevertheless,

our description should be taken as a precautionary note for

new TLDs.

The attack is based on the fact that certain implementations

first check if the given hostname matches the certificate’s

CN/SAN as a domain name and afterward as IP address.

Therefore, consider an attacker controlling an IP address,

say 80.50.12.33 and holding an IP-based certificate with that

IP address. Then, assuming that “33” is a valid TLD, the

same entity is automatically in possession of a certificate for
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TABLE VI
BEHAVIORS OF SSL/TLS IMPLEMENTATIONS FOR X.509 CERTIFICATES

WITH IPV4 ADDRESSES IN CN/SUBJECTALTNAME

SSL/TLS Certificate with IPv4 in
Libs/Apps Subject CN SubjectAltName DNS
OpenSSL app app
GnuTLS accept accept
MbedTLS accept* accept*
MatrixSSL accept accept
JSSE reject reject
CPython SSL accept reject

HttpClient accept reject
cURL accept reject

app: library lets application choose the identifier type.
accept*: library/application does not support IP-based certification verification
but allows IPv4-format string in hostname verification.

the domain name “80.50.12.33” and can perform man-in-the-

middle attacks on that domain!

We evaluated whether this attack is feasible in current

SSL/TLS implementations. Table VI shows the results of our

evaluation. All libraries/applications which are marked with

an accept either in the subject CN or subjectAltName DNS

columns are vulnerable to this attack. Even though this issue

is not currently exploitable, it presents a security risk for these

libraries in case numerical TLDs are introduced in future.

D. Embedded NULL bytes in CN/SAN identifiers

In 2008, Kaminsky et al. [53] demonstrated a vulnerabil-

ity in the hostname verification implementations of popular

SSL/TLS libraries where early NULL-byte (\0) terminations

in an X.509 CN causes some libraries to recognize different

CN values. In a nutshell, a client accepts certificate from an

attacker’s subdomain “www.bank.com\0.attacker.com” when

attempting to connect to “www.bank.com” and therefore allow

the attacker to hijack the connection.

In order to defend against this attack, two lines of defense

were followed. The first option was to reject any certificate

containing NULL bytes embedded within any CN/SAN iden-

tifiers. The second line was to simply patch the API functions

which retrieve the CN/SAN identifiers from the certificate in

order to recover the entire identifier even in the presence of

embedded NULL bytes.

We thoroughly evaluated the defense implemented in each

SSL/TLS library. Table VII presents the results of our evalu-

ation. The second column describes whether the SSL/TLS li-

brary allows embedded NULL bytes, the third column presents

the corresponding API function which is used to retrieve the

CN/SAN identifier, and the fourth column describes whether

the API call also returns the length of the corresponding

CN/SAN identifier. Note that this is a very important feature

since, otherwise, the application using the SSL/TLS library

cannot know where the identifier string is terminating. We no-

tice that this important feature is implemented by all libraries

except JSSE. Notice though that, even though JSSE is not

returning the length of the corresponding identifier, since JSSE

is written in Java, it is not vulnerable to the embedded NULL

byte attacks because Java strings are not NULL terminated.

TABLE VII
SUPPORT FOR EMBEDDED NULL CHARACTER IN CN/SUBJECTALTNAME

IN DIFFERENT SSL/TLS LIBRARIES

SSL ID Allows Function / Structure Name Returns
Libraries Embedded Length

NULL?

OpenSSL CN � X509 NAME get text by NID() �
CN � X509 NAME get text by OBJ() �

CN � X509 NAME get index by NID()1 �

CN � X509 NAME get index by OBJ()1 �

SAN � X509 get ext d2i()2 �

GnuTLS CN � gnutls x509 crt get dn by oid() �
SAN � gnutls x509 crt get subject alt name() �

MbedTLS CN � mbedtls x509 name �
SAN � mbedtls x509 sequence �

MatrixSSL CN � x509DNattributes t �
SAN � x509GeneralName t �

JSSE CN � getSubjectX500Principal() �
SAN � getSubjectAlternativeNames() �

CPython SSL — Functionality not exposed to apps —

1followed by X509 NAME get entry()
2followed by sk GENERAL NAME value()

Despite the fact that SSL/TLS implementations take pre-

cautions against embedded NULL byte attacks, this doesn’t

imply that the applications using the libraries are also secure.

Indeed, applications implementing the hostname verification

functionality must ensure that they do not use vulnerable

functions such standard string comparison function from libc

(e.g., strcmp, strcasecmp, fnmatch), as they match

strings in NULL-termination style.

In order to evaluate the security of applications using

SSL/TLS libraries against embedded NULL byte attacks, we

conducted a manual audit against several applications. Un-

fortunately, we found several popular applications being vul-

nerable to man-in-the-middle attacks using embedded NULL

byte certificates. Some examples include FreeRadius server [8]

which is one of the most widely deployed RADIUS (Remote

authentication dial-in user service) servers, OpenSIPS [12]

which is a popular open-source SIP server, Proxytunnel [13]

which is a stealth tunneling proxy, and Telex Anticensorship

system [15] which is an open-source censorship-circumventing

software.

An important takeaway from this section is that embedded

NULL byte attacks, even though addressed at the SSL/TLS

library level, still present a very realistic and overlooked threat

for applications using these libraries.

VII. RELATED WORK

A. Securing SSL/TLS Implementations

The security analysis of different components of SSL/TLS

implementations has been examined in a large number of

projects. We provide a summary of the most related projects

below. The key difference between these projects and ours

is that none of these projects focused on automatically an-

alyzing the correctness of the hostname verification part of

SSL/TLS certificate validation implementations. Prior works

didn’t cover analyzing hostname verification in detail primarily
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due to the hardness of accurately modeling the implementa-

tions. In this paper, we solve this problem by using automata

learning techniques and demonstrating that they can accurately

and efficiently infer DFA models of hostname verification

implementations in a black-box manner.

Automated Analysis of SSL/TLS implementations.
Brubaker et al. [36] and subsequently Chen et al. [39] used

mutation-based differential testing to find certificate validation

issues. However, in their case, the hostname verification

functionality of the libraries under test is disabled in order

to discover other certificate validation issues and thus, they

cannot uncover bugs discovered by our work. He et al. [52]

used static analysis to detect incorrect usage of SSL/TLS

libraries APIs. Somorovsky [61] created TLS-Attacker a tool

to fuzz the TLS implementations systematically. However,

TLS-Attacker focused on finding bugs in the protocol level

and did not analyze the hostname verification functionalities

of SSL/TLS implementations. Finally, de Ruiter and Poll [41]

used automata learning algorithms to infer models of the

TLS protocol and manually inspected the machines to find

bugs. Contrary to our approach, where we focus on analyzing

hostname verification implementations, their work focused

on the TLS state machine induced by the different messages

exchanged during the TLS handshake.

Certificate validation. Georgiev et al. [50] studied different

ways that SSL/TLS API was abused in non-browser software.

They manually identified pervasive incorrect certificate valida-

tion in different SSL/TLS implementations on which critical

software rely. Fahl et al. [45] investigated the incorrect usage

of SSL/TLS API in Android apps. However, unlike HVLearn,

none of these projects looked into the implementations of the

API functions.

Parsing X.509 certificates with embedded NULL character.
Kaminsky et al. [53] demonstrated that several hostname ver-

ification implementations mishandled embedded NULL char-

acters in X.509 certificates and can be used to trick a CA into

issuing a valid leaf certificate with the wrong subject name.

However, they found this issue manually and did not have

any automated techniques for analyzing hostname verification

implementations. Moreover, these issues were supposed to be

fixed by the SSL/TLS implementations but we find that several

applications using incorrect APIs for extracting the identifier

strings from a certificate still suffer from these vulnerabilities

as described in Section VI.

Cryptographic attacks and implementation bugs. There is

a large body of work on various cryptographic attacks on

the SSL/TLS protocol implementations. The interested reader

may consult [40] for a survey. These attacks include various

protocol based attacks [35], [43], [44], [46] as well as timing

attacks [37] and flaws in pseudo-random number genera-

tors [57]. Besides cryptographic attacks, implementation bugs

may cause severe security vulnerabilities as demonstrated by

recently discovered attacks [26], [56].

B. Automata inference and applications

Angluin [31] invented the L∗ algorithm for learning deter-

ministic finite automata (DFA) from membership and equiv-

alence queries. In the following years, many variations and

optimizations were developed, including the Kearns-Vazirani

algorithm used in HVLearn [54]. The interested reader can

read the paper by Balcazzar et al. [34] for a unified presen-

tation of popular algorithms. Automata learning algorithms

have been applied to infer models for various protocols such

as EMV bank cards [29], electronic passports [30], TLS

protocols [41] and TCP/IP implementations [47], [48].

Argyros et al. [33] utilized symbolic finite automata learning

algorithms to create a differential testing framework and lever-

aged it to discover bugs in Web application firewalls. While

our approach is similar in nature, we counter the problem

of large alphabets by using only the necessary symbols for

our analysis. Moreover, instead of using differential testing to

simulate equivalence queries, our approach uses an optimized

version of the Wp-method, which offers stronger correctness

guarantees.

VIII. CONCLUSION

We designed, implemented and extensively evaluated

HVLearn, an automated black-box automata learning frame-

work for analyzing different hostname verification imple-

mentations. HVLearn supports automated extraction of DFA

models from multiple different implementations as well as

efficient differential testing of the inferred DFA models. Our

extensive evaluation on a broad spectrum of hostname verifi-

cation implementations found 8 RFC violations with serious

security implications. Several of these RFC violations could

enable active man-in-the-middle attacks. We also discovered

121 unique differences on average between each pair of

inferred DFA models. In addition, given that the RFC specifi-

cations are often ambiguous about corner cases, we expect

that the models inferred by HVLearn will be very useful

to the developers for checking their hostname verification

implementations against the RFC specifications and therefore

can help in reducing the chances of undetected security flaws.

We have made HVLearn open-source so that the community

can continue to build on it. The framework can be accessed

at https://github.com/HVLearn.
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X. APPENDIX

A. Details of test hostname verification implementations

OpenSSL. has separate checking functions for each type

identifiers as shown in Table I. In our testing, we use the

default setup that supports matching wildcards. OpenSSL

also provides support for applications to turn some of these

hostname verification functions on or off by calling different

setup functions (e.g., X509_VERIFY_PARAM_set1_host
and X509_VERIFY_PARAM_set1_email).

GnuTLS. The GnuTLS check hostname function is de-

signed for certificate verification for HTTPS supporting do-

main names, IPv4, and IPv6. Like OpenSSL, GnuTLS also

provides the application to select whether to verify hostname

with wildcard or not. By default, GnuTLS wildcard matching

is enabled. We use the default setting for our experiments.

MbedTLS. The hostname verification functions in

MbedTLS only supports checking for domain name

verification.

MatrixSSL. A single function matrixValidateCerts
is responsible for checking all different types of identifiers

(e.g., DNS, IPv4, and email). The library does not include

support for IPv6 yet. MatrixSSL also provides a separate

function, psX509ValidateGeneralName that should be

used before calling matrixValidateCerts for name checking for

filtering out invalid input.

JSSE (Java Secure Socket Extension). SunJSSE [58],

as part of the JSSE release, has internal built-in hostname

checking support (sun.security.util.HostnameChecker [42]). It

supports domain name, IPv4, and IPv6 verification through the

HostnameChecker.match interface.

CPython SSL. CPython is the oldest and one of the

most popular Python VM implementation. CPython’s inbuilt

SSL support depends on the OpenSSL library, but does

not use OpenSSL’s hostname verification function. Instead,

it includes its own hostname verification implementation,

match_hostname function. Currently, it only supports do-

main name and IP address verification but does not support

email verification.

HttpClient. (Apache HttpClient) is used extensively

in Web-services middleware such as Apache Axis 2

It supports IPv4, IPv6, and domain name verifica-

tion [32]. By default the library provides a verify func-

tion in DefaultHostnameVerifier to perform the

identity verification. The verifier can also be used with

PublicSuffixMatcher object to perform additional

checks.

cURL. By default, it uses OpenSSL [7] but implements

its own hostname verification function verifyhost that

supports domain name, IPv4, and IPv6 verification.

B. Developer Responses

We notified the developers of each affected

library/application for all of our findings, including RFC

violations and discrepancies. In this section, we present

an overview of the developer responses for each different

library/application.

GnuTLS. The GnuTLS team is currently working on a

patch to fix the issue of seeking a match in the CN when

an IP address identifier is in the subjectAltName [1]. The

developers also plan to provide a way to specify the identifier

type in order to avoid the confusion between hostnames and

IP addresses [2]. Additionally, the team plans to remove a

fallback option which matches an IP address with a subjectAlt-

Name DNS [9], thus resolving the potential attack presented

in Section VI-C [3]. Finally, GnuTLS has recently introduced

IDNA2008 support in version 3.5.9 and performs extensive

checks to verify the format of the DNS names stored in the

certificate.

MbedTLS. We are currently discussing the discovered

issues with the MbedTLS team.

MatrixSSL. MatrixSSL is prioritizing the fixes for the RFC

violations, including the incorrect order of checking between

subject CN and subjectAltName identifier (violation of RFC

6125) and matching the local-part of an email address in a

case-insensitive manner (violation of RFC 5280). These fixes

are deployed in their new version 3.9.0 [4]. This version also

addresses other discrepancies we reported by providing an

optional flag for hostname input validation, and providing

parameters for users in order to specify the type of the

identifier (e.g., DNS, IP ADDR) in order to address the attack

discussed in Section VI-C.

JSSE. The JSSE team does not consider RFC 6125 com-

pliance to be a feature of the current version of the library.

However, the team informed us that they are currently working

on plans to add compliance with RFC 6125 in the next versions

of the library.

CPython SSL. CPython plans to deprecate their hostname

verification implementation and directly use OpenSSL’s im-

plementation in the next release.

OpenSSL. The OpenSSL team decides not to address the

issue of matching a partial hostname suffix of a subject

CN/subjectAltName, as this discrepancy is not an RFC viola-

tion. For the other discrepancies e.g., matching a wildcard in

a public suffix or matching an invalid hostname, the OpenSSL

team believes that they should be handled at the application

level or by certificate authorities and therefore, they should

not be fixed in the library itself.

HttpClient. The HttpClient team has addressed the viola-

tions of matching a subject CN in case sensitive manner (viola-

tion of RFC 6125 and RFC 5280) and attempting to match sub-

ject CN when a subjectAltName is present (violation of RFC

6125). These issues are resolved in version 4.5.3, which is cur-

rently an alpha release [5]. The HttpClient team decided not to

address the other reported issues as they are handled correctly

if the application calls the DefaultHostnameVerifier
with the PublicSuffixMatcher in the verifier construc-

tor.

C. Detailed list of discrepancies

In Table VIII, we present a detailed list of the discrepancies

discovered between various SSL/TLS libraries and applica-

tions.
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TABLE VIII
SAMPLE STRINGS ACCEPTED BY THE AUTOMATA INFERRED FROM DIFFERENT HOSTNAME VERIFICATION IMPLEMENTATIONS

Test Certificate Identifier Template OpenSSL GnuTLS MbedTLS MatrixSSL JSSE CPython SSL HttpClient cURL

Wildcard in Certificate

*.aaa.aaa

a.aaa.aaa
.aaa.aaa
*.aaa.aaa
.aaa
a.aaa.aaa\0
.aaa.aaa\0
.aaa\0
*.aaa.aaa\0

.aaa.aaa

.aaa.aaa\0
a.aaa.aaa
a.aaa.aaa\0

a.aaa.aaa
a.aaa.aaa\0 a.aaa.aaa a.aaa.aaa .aaa.aaa

a.aaa.aaa
a.aaa.aaa.\0
a.aaa.aaa\0
a.aaa.aaa.

aaa.*.aaa

aaa.*.aaa
.aaa
.*.aaa
aaa.*.aaa\0
.aaa\0
.*.aaa\0

aaa.*.aaa
aaa.*.aaa\0

aaa.*.aaa
aaa.*.aaa\0 none aaa.a.aaa aaa.*.aaa aaa..aaa

aaa.*.aaa
aaa.*.aaa.\0
aaa.*.aaa\0
aaa.*.aaa.

a*.aaa.aaa

aa.aaa.aaa
a.aaa.aaa
a*.aaa.aaa
.aaa.aaa
.aaa
aa.aaa.aaa\0
a.aaa.aaa\0
a*.aaa.aaa\0
.aaa.aaa\0
.aaa\0

a*.aaa.aaa
a*.aaa.aaa\0

a*.aaa.aaa
a*.aaa.aaa\0 none a.aaa.aaa a.aaa.aaa a.aaa.aaa

aa.aaa.aaa
aa.aaa.aaa.\0
aa.aaa.aaa\0
aa.aaa.aaa.

aaa.a*.aaa

aaa.a*.aaa
.aaa
.a*.aaa
aaa.a*.aaa\0
.aaa\0
.a*.aaa\0

aaa.a*.aaa
aaa.a*.aaa\0

aaa.a*.aaa
aaa.a*.aaa\0 none aaa.a.aaa aaa.a*.aaa aaa.a.aaa

aaa.a*.aaa
aaa.a*.aaa.\0
aaa.a*.aaa\0
aaa.a*.aaa.

xn--aaa*.aaa
.aaa
.aaa\0

xn--aaa*.aaa
xn--aaa*.aaa\0

xn--aaa*.aaa
xn--aaa*.aaa\0 none xn--aaa.aaa xn--aaa*.aaa xn--aaa.aaa

xn--aaa*.aaa
xn--aaa*.aaa.\0
xn--aaa*.aaa\0
xn--aaa*.aaa.

*.xn--aaa.aaa

a.xn--aaa.aaa
.aaa
.xn--aaa.aaa
*.xn--aaa.aaa
a.xn--aaa.aaa\0
.aaa\0
.xn--aaa.aaa\0
*.xn--aaa.aaa\0

.xn--aaa.aaa

.xn--aaa.aaa\0
.xn--aaa.aaa
.xn--aaa.aaa\0 none a.xn--aaa.aaa a.xn--aaa.aaa .xn--aaa.aaa

a.xn--aaa.aaa
a.xn--aaa.aaa.\0
a.xn--aaa.aaa\0
a.xn--aaa.aaa.

xn--aaa.*.aaa

.aaa

.*.aaa
xn--aaa.*.aaa
.aaa\0
.*.aaa\0
xn--aaa.*.aaa\0

xn--aaa.*.aaa
xn--aaa.*.aaa\0

xn--aaa.*.aaa
xn--aaa.*.aaa\0 none xn--aaa.a.aaa xn--aaa.*.aaa xn--aaa..aaa

xn--aaa.*.aaa
xn--aaa.*.aaa.\0
xn--aaa.*.aaa\0
xn--aaa.*.aaa.

Wildcard Unclear Practices

*.aaa

.aaa
*.aaa
.aaa\0
*.aaa\0

none
a.aaa
a.aaa\0

a.aaa
a.aaa\0 a.aaa a.aaa .aaa

*.aaa
*.aaa.\0
*.aaa\0
*.aaa.

a*b*c*.aaa.aaa

a*b*c*.aaa.aaa
.aaa.aaa
.aaa
a*b*c*.aaa.aaa\0
.aaa.aaa\0
.aaa\0

a*b*c*.aaa.aaa
a*b*c*.aaa.aaa\0

a*b*c*.aaa.aaa
a*b*c*.aaa.aaa\0 none abc.aaa.aaa none ab*c*.aaa.aaa

aab*c*.aaa.aaa
aab*c*.aaa.aaa.\0
aab*c*.aaa.aaa\0
aab*c*.aaa.aaa.

*.*.aaa.aaa

.aaa.aaa

.*.aaa.aaa
*.*.aaa.aaa
.aaa
.aaa.aaa\0
.aaa\0
.*.aaa.aaa\0
*.*.aaa.aaa\0

.*.aaa.aaa

.*.aaa.aaa\0
a.*.aaa.aaa
a.*.aaa.aaa\0 none a.a.aaa.aaa a.*.aaa.aaa .*.aaa.aaa

a.*.aaa.aaa
a.*.aaa.aaa.\0
a.*.aaa.aaa\0
a.*.aaa.aaa.

*b.aaa.aaa

ab.aaa.aaa
b.aaa.aaa
.aaa.aaa
*b.aaa.aaa
.aaa
ab.aaa.aaa\0
b.aaa.aaa\0
.aaa.aaa\0
.aaa\0
*b.aaa.aaa\0

b.aaa.aaa
b.aaa.aaa\0

*b.aaa.aaa
*b.aaa.aaa\0 none ab.aaa.aaa

b.aaa.aaa b.aaa.aaa b.aaa.aaa

ab.aaa.aaa
ab.aaa.aaa.\0
ab.aaa.aaa\0
ab.aaa.aaa.

.aaa.aaa

.aaa.aaa

.aaa

.aaa.aaa\0

.aaa\0
none

.aaa.aaa

.aaa.aaa\0 none aaa.aaa .aaa.aaa .aaa.aaa

.aaa.aaa

.aaa.aaa.\0

.aaa.aaa\0

.aaa.aaa.

Email Address

SAN email: *@aaa.aaa
*@aaa.aaa
*@aaa.aaa\0

*@aaa.aaa
*@aaa.aaa\0 – none – – – –

SAN email: aaa@*
aaa@*
aaa@*\0

aaa@*
aaa@*\0 – none – – – –

SAN email: aaa@*.aaa
aaa@*.aaa
aaa@*.aaa\0

aaa@*.aaa
aaa@*.aaa\0 – none – – – –

SAN email: aaa@aaa.*
aaa@aaa.*
aaa@aaa.*\0

aaa@aaa.*
aaa@aaa.*\0 – none – – – –

SAN email: AAA@aaa.aaa
AAA@aaa.aaa
AAA@aaa.aaa\0

AAA@aaa.aaa
AAA@aaa.aaa\0 –

aaa@aaa.aaa
aaa@aaa.aaa\0 – – – –

SAN email: aaa@AAA.aaa
aaa@aaa.aaa
aaa@aaa.aaa\0

aaa@aaa.aaa
aaa@aaa.aaa\0 –

aaa@aaa.aaa
aaa@aaa.aaa\0 – – – –

IP Address
SAN IP Addr: *.111.111.111 none none – none none none none none
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